<u>J. Šaroun</u>¹, J. Kulda², V. Ryukhtin¹

¹Nuclear Physics Institute, Řež

²Institute Laue-Langevin, Grenoble

Contents:

- New features in RESTRAX (TAS resolution & data fitting)
- New features in SIMRES (ray-tracing)
- Examples of new components:

virtual cold source – using TRIPOLI outputlobster-eye guides – comparison with focusing monochromator

• Discussion – MCNSI milestones

see http://omega.ujf.cas.cz/restrax/

New in RESTRAX 4.8.1:

sample "exchanger" (EXCI)

Using **runtime modules** to describe scattering at the sample permits to fit/simulate data for different models without restart.

Problems in FORTRAN – solved by C-wrapper calling *dlopen* ...

simulated data (GENDT)

Generates data incl. counting statistics, using $S(\mathbf{Q},\omega)$ from a runtime module. Permits **virtual experiments.**

improved job-files

Extended syntax of job files permits to create guided sessions: **tutorials** 4 examples in RESTRAX and 3 in SIMRES are available in the current release

3-column data format

data in a simple format [x,y,error] can be loaded (e.g. pre-processed by *Mview*)

RESTRAX documentation:

source documentation

html pages of source code with cross-references is generated by perl script (derived from for2html) see here

manual to RESTRAX

The manual is published at the RESTRAX homepage (both html & PDF) see here

mailing list

Information on program updates/patches will be sent, visit RESTRAX homepage for subscription

New in SIMRES 5.0.1:

features from RESTRAX

command line interface, installation scripts, source docs, etc.

parabolic & elliptic guides

Functionality of the collimator component has been extended:

- slit / channel
- Soller collimator (optionally convergent, oscillating)
- neutron guide or bender
- guide with parabolic or elliptic profile
- **lobster-eye guide** (1 or 2 dimensional), with straight, parabolic or elliptic lamellae

virtual source with inhomogeneous flux distribution

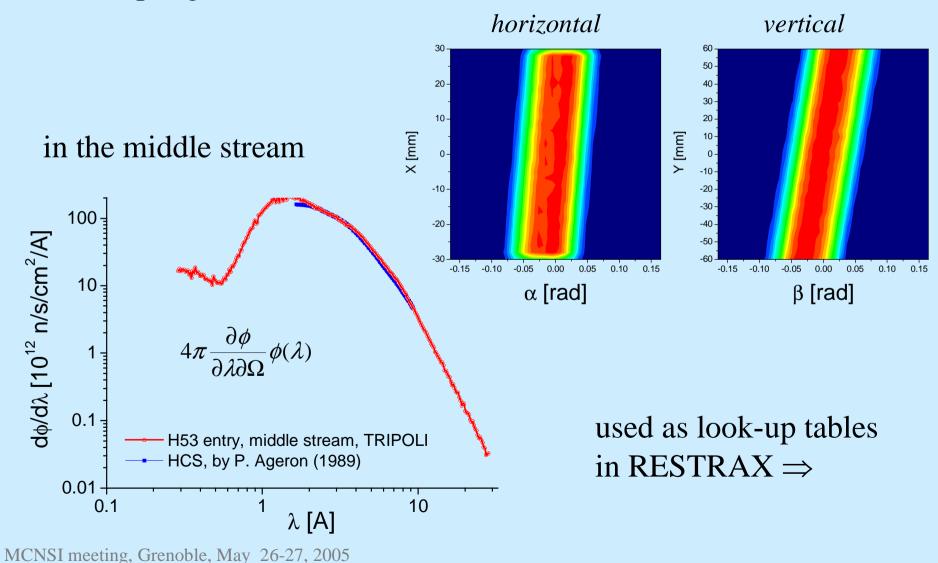
rectangular or circular area using 1- and 2-dimensional look-up tables table for H53 generated by resampling the output of TRIPOLI (by G. Campioni)

Virtual cold source

Inhomogeneous source:
$$\frac{\partial}{\partial \lambda} \phi(x, y, k_x, k_y, \lambda)$$

- **A.** Using output of core simulations (e.g. from TRIPOLI): **too low events density** for propagation behind monochromator $d\Omega \sim 0.0003$, $\Delta \lambda / \lambda \sim 0.01$
 - => only 500 neutrons in 1GB file (10⁷ events)!
- **B.** Look-up tables: 5-dimensions!

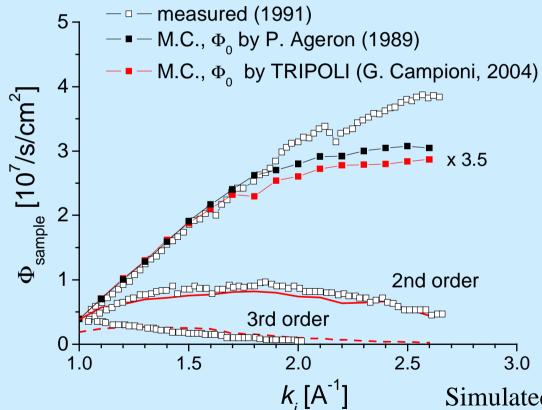
Covariance matrix from TRIPOLI data:


	X	y	$\mathbf{k}_{\mathbf{x}}$	$\mathbf{k_y}$	E
X	1.00				
y	0.00	1.00			
k _x	0.28	0.00	1.00		
k _y	0.00	0.52	0.00	1.00	
E	0.00	0.00	0.02	-0.03	1.00

=> factorisation:

$$\phi(x, y, k_x, k_y, \lambda) \cong P_H(x, k_x) P_V(y, k_y) \phi_{\lambda}(\lambda)$$

Virtual cold source


Resampling TRIPOLI data for H53:

Virtual cold source

Monochromatic flux at the sample for IN14:

PG 00.2,
$$\alpha_2 = 40$$

Capture flux in H53:

distance ϕ [10¹⁰n/s/cm²]

0.0 m 53.0

2.75 m 7.7

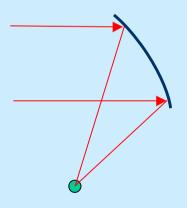
9.5 m 4.0

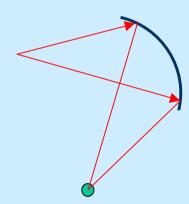
16.4 m 3.7

Simulated flux 3.5 times higher (consistent with McStas results). Is there a problem with the guide?

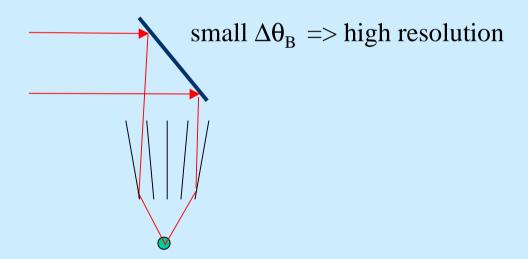
Demonstration of new components:

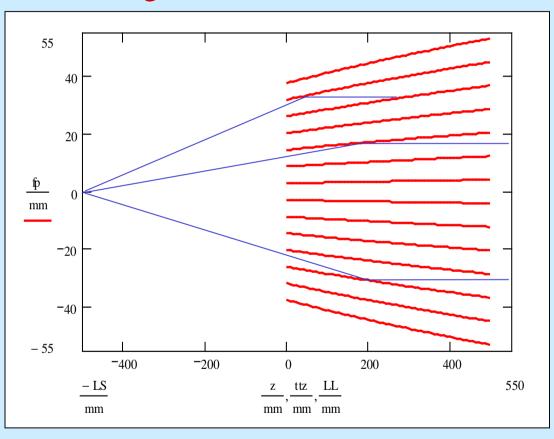
elliptic & parabolic lobster-eye optics


A. Focusing crystal array


- Beam size at focal point given by the size of segments
- Simultaneous focusing in space and energy is not possible (with exceptions)

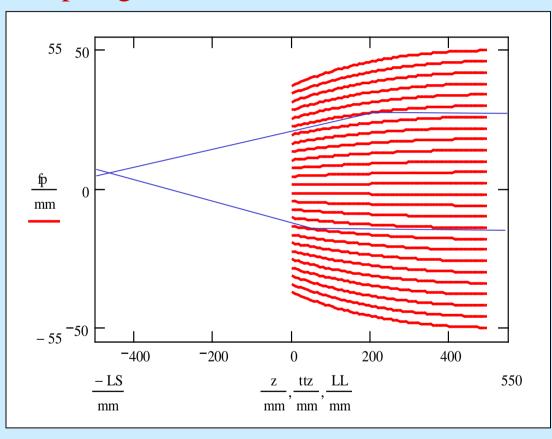
$$f_X = R\sin(\theta_B)$$


$$f_X = R\sin(\theta_B)$$
 $f_E = 2R\sin(\theta_B)$



B. Supermirror optics

- small critical angle
- reflectivity < 1
- minimum distance from the sample is required



Parabolic guide

- + perfect focusing of a parallel beam
- large reflection angle at the entry

Elliptic guide

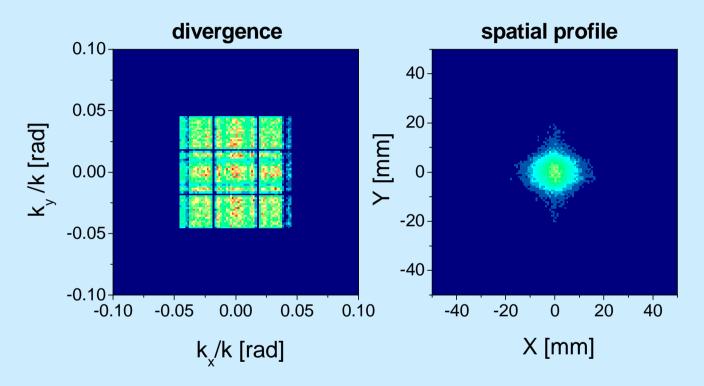
- parallel beam does not focus to a point
- lamellae are parallel at the entry

Simulations for the cold neutrons TAS – IN14

```
cold source (using TRIPOLI data), k_i=1.55 A<sup>-1</sup> 16.4 m straight guide (m=Ni58), 6x12 cm<sup>2</sup>
```

. . .

with some modifications:


- doubly focusing PG monochromator (7x9 segments)
- shorter sample distance (2.1 m)
- lobster-eye guide:

```
length = 50 \text{ cm}
distance from the sample = 50 \text{ cm}
entry area = 10 \times 10 \text{ cm}^2
```

setup optimizations: maximum flux at 1x1 mm² sample area

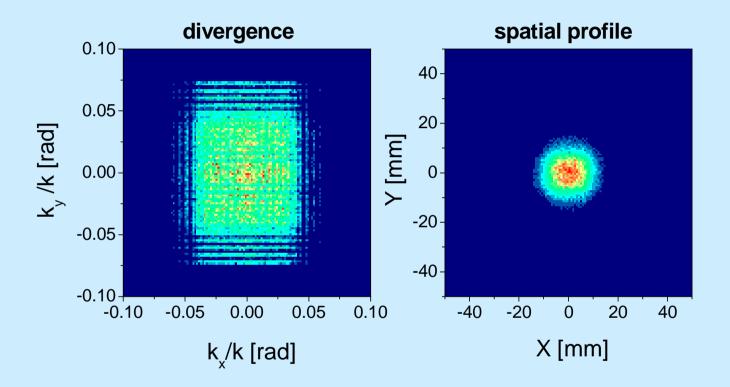
- crystal curvatures (numerically with ray-tracing)
- exit area

Parabolic guide, flat monochromator

Optimized parameters:

number of lamellae: 13 x 13

exit area: $7.0 \times 7.0 \text{ cm}^2$


Results:

flux $[10^6/\text{s/mm}^2]$: 7.59

total $[10^8/s]$: 17.4

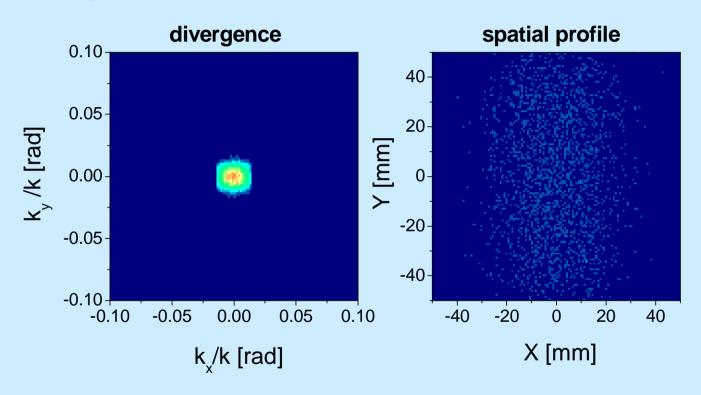
 $\Delta E_i [meV] : 0.094$

Elliptic guide, flat monochromator

Optimized parameters:

number of lamellae: 25 x 25

exit area: $7.3 \times 7.3 \text{ cm}^2$

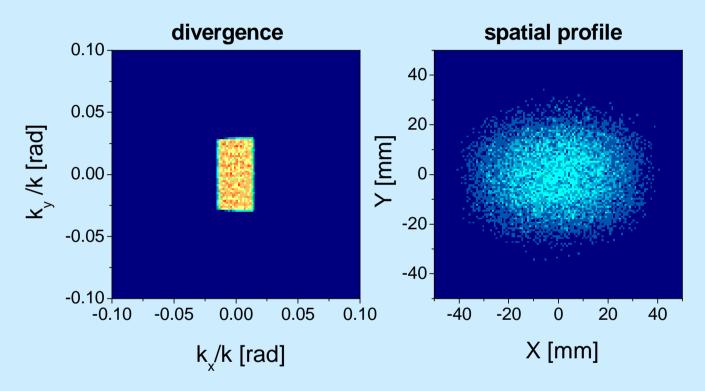

Results:

flux $[10^6/\text{s/mm}^2]$: 9.74

total $[10^8/s]$: 26.2

 $\Delta E_i [meV] : 0.12$

No guide, flat monochromator



Results:

flux $[10^6/\text{s/mm}^2]$: 0.69 total $[10^8/\text{s}]$: 42.8

 $\Delta E_i [meV] : 0.15$

No guide, focusing monochromator

Optimized parameters:

1/R_H [m⁻¹]: 0.15 1/R_V [m⁻¹]: 0.39

Results:

flux $[10^6/\text{s/mm}^2]$: 2.50 total $[10^8/\text{s}]$: 56.7 ΔE_i [meV] : 0.14

Summary

	total	flux	ΔΕ
parabolic (13 x 13)	1.74E+09	7.59E+06	0.10
elliptic (25 x 25)	2.62E+09	9.74E+06	0.12
no guide	4.28E+09	6.87E+05	0.15
focusing mono	5.67E+09	2.50E+06	0.14

focusing by lobster-eye:

- gain 4x in flux compared to focusing by monochromator
- good energy resolution

MCNSI milestones

< Q6:

D2.3 first version of RESTRAX manual

done, + new version release

M2.2 prototype sample components

in RESTRAX: phonons, incommensurate fluctuations, damped oscillators

SIMRES: powder, Vanad

< **Q8**:

D2.4 new release with NeXus format

possible, but needs specification, xml format (DTD for TAS?)

M3.4 common simulation (steady-state)

IN14? (partially done)